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Heat Conduction in a Random Medium 
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The method of time-ordered cumulants is used to investigate the behavior 
of heat pulses in a one-dimensional medium in which the thermal conduc- 
tivity is random. A partial differential equation is obtained for the average 
temperature profile; it is the heat equation modified by the addition of a 
fourth-order spatial derivative. A solution is obtained by asymptotic series. 
The first two spatial moments of the average temperature profile are 
evaluated and are shown to tend to those of a Gaussian when t is large. 
Finally, an equation is obtained for the covariance function. 
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1. I N T R O D U C T I O N  

I t  is our  pu rpose  in this pape r  to invest igate heat  conduct iv i ty  in a r a n d o m  
medium.  Pa r t  o f  our  interest  i s  the physical  phenome non  itself, while pa r t  is 
the mathemat ica l  technique used. The me thod  o f  o rdered  cumulants  is used 
to  render  the p rob l em in an exact ly t rac tab le  form,  which simplifies even 
fur ther  as a result  o f  our  a s sumpt ion  tha t  the t ime corre la t ion  involved is a 
de l ta  funct ion.  This me thod  is in d rama t i c  con t ras t  with o ther  methods ,  which 
necessari ly involve app rox ima t ion  procedures  even though they t rea t  precisely 

the  same prob lem.  
A very closely re la ted p rocedure  can be appl ied  to  the phe nome non  o f  

wave p r o p a g a t i o n  in a r a n d o m  medium,  and  the consequence is that ,  on the 
average,  the wave p r o p a g a t i o n  becomes damped .  Here,  however,  we begin 
with a dissipat ive process,  hea t  conduct ion ,  and  the s tochast ic  na ture  o f  the 
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conductivity produces, on the average, an antidamping behavior. A Fourier 
integral representation, consequently, is not valid, and we present an asymp- 
totic series solution as well as an explicit calculation of the first few moments 
of the solution. It is observed that asymptotically in time the heat conduction 
behaves more and more just like it would behave in the absence of stochasti- 
city. This result, coupled with the antidamping nature of the stochastically 
induced conduction, remains an intriguing dilemma. 

We close our analysis with a presentation of a technique for the deriva- 
tion of the Fokker-Planck equation which is associated with stochastic heat 
conduction. This technique undoubtedly has applicability in many other 
stochastic problems involving fields, such as is the case with heat conduction 
and wave propagation. 

2. D IFFERENTIAL E Q U A T I O N  SATISFIED BY M E A N  SOLUTION 

The equation under investigation is 

aT a [v(x,t) aT ] 
at - ax  ~ (1) 

where T(x, t) is the temperature and v(x, t) is the thermal conductivity (taken 
to be a stochastic function of space and time). If  we introduce the spatially 
integrated temperature profile 

S(x, t) = T(x', t) dx' (2) 
- - o o  

then it can be shown that Eq. (1) reduces to 

as~at = v(x, t)  a2S/ax 2 (3) 

The stochastic thermal conductivity is taken to be of the form 

v(x, t) = Vo[1 + #(x, t)] (4) 

where 

�9 and 

(#(x, t)> = 0, (v(x, t)) = Vo > 0 (5) 

(#(x, t)#(x', t')> = 2R(lx - x' D 8(t - t ') (6) 

For definiteness, it is further stipulated that # is a Gaussian process. 
The formal solution to the stochastic equation (3) can be expressed in 

terms of the time-ordered exponential (1~ 

S(x, t) = T exp v(x, s) ~ ds S(x, 0) (7) 
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The time-ordered exponential is defined by 

Texp  f(s) ds - I + f(s) ds + f(h)f(te) dh dt2 

f;f? 
for any function or operator f(t). When the commutator o f f ( t )  at two 
different times vanishes, i.e., 

[f(t),f(s)] = 0 (9) 

then the time-ordered exponential reduces to the ordinary exponential. In 
Eq. (8), 

f ( t)  -- v(x, t) a2/Ox 2 (10) 
and 

[v(x, t) ~2/0x2, v(X, s) ~2/OxZ] 4:0 (11) 

Equations (3) and (4) provide an example of  a multiplicative stochastic 
process. (=} 

The solution given by Eq. (7) can be averaged using time-ordered 
cumulants(1); the final result is 

(S(x, t))  = Texp  [g(1)(s) + g(2)(s)] ds S(x, 0) (12) 

where 

gin(s) ds = (v(x, s)) ~ ds = tvo ~ (13) 

fs g(m(s) ds | 
c o , 1  a2 as 

= Vo=(#(x, h) ~ #(x, t=)) ~ dr= dq 
�9 ] 0  . J O  

82 82 
= t~~ o-~ R(Ix - Yl)~=~ ax ~ 

[02  1 0 5  04 = t,0 ~ ~ R(Ix - y I) y=x - ~  + t~~ (14) 

Only the first two cumulants are needed here because the second moment of 
#(x, t), as given by Eq. (6), contains a Dirac delta function in the time 
variable. Employing the abbreviation 

02 
R"(O) - ~y2 R(Ix - Yl)y=x (15) 

we can write Eq. (12) in the form 

(S(x , t ) )  = exp t v o ~  + tvo R ( O ) ~  + R ( O ) ~  S(x,O) (16) 
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Therefore, (S(x, t)) satisfies the partial differential equation 

c08t (S(x, t)) = [Vo + vo2R"(0)] ~ + vo2R(O) ~ (S(x, t)) (17) 

Upon using Eq. (2) and taking the x derivative of Eq. (17), we obtain 

{ 8 2 8 ' }  
cOSt (T(x, t)) = [v0 + vo2R"(0)] ~-~ + vo2R(0) ~ (T(x, t)) (18) 

which is the equation that the average temperature profile (T(x, t)) satisfies. 
Note the existence of the fourth-order spatial derivative on the right-hand 
side, and the modification of Vo by voR"(O) in the coefficient of the 82/~x ~ term. 

On physical grounds, it is natural to expect that R(0) > 0. Consequently, 
the 84/8x 4 term will cause the coefficient of a spatial Fourier integral repre- 
sentation for (T(x, t)) to blow up. Nevertheless, the form of Eq. (18) makes 
it clear that the complete x integral of (T(x, t)), which is ( S ( ~ ,  t)) according 
to Eq. (2), is constant in time, provided (T(x, t)) vanishes at x = + ~ .  This 
combination of circumstances forces us to examine an asymptotic series 
representation for (T(x, t)) instead of a Fourier integral representation. 

. S O L U T I O N  BY A S Y M P T O T I C  S E R I E S  

Let us take as the initial condition 

T(x, O) = To 8(x - Xo) 
With the abbreviations 

cl = Vo + vo2R"(O), 

the solution to Eq. (18) may be written as 

T~ ~(T(x, t)) 

= exp(te~ ~--~2) exp(tc2 ~--~ffi~) 3(X - Xo) 

c~ -- ~o2R(O) 

= exp tc2 ~ (4~rclt) -112 exp (x - Xo) 2 
4clt 

(te~) ~ 04" 
.=o ~ '  n! 8x4.(4zrclt) -lt2 exp (x 4clt- x~ 

.=o nI ml! msI 2 m2 
rrl:t = 0 m 2 = O  

• ( (X~ccltO).)m~(_2clt)_m2(4~rclt)_ll2exp (X 4Clt-- x~ 

(19) 

(20) 

(21) 
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where the last inequality follows directly from an application of DiBruno's 
formula. (a~ 

Note that the physical dimensions for cl and c2 are (length) 2 (time)-1 
and (length) 4 (time) -1, respectively. Consequently, a typical term in Eq. (21) 
has the summand 

- .  

which has physical dimensions of (length) 4'~ (length)-mi (length)-2m2. The 
Dirac delta function 8(4n - rnl - 2rn2) in Eq. (21) shows that all these 
" lengths"  cancel out, and rn~ is always an even integer. The time dependence 
of this typical summand is clearly (t)n-ml -m2, which for n > 1 always has a 
negative exponent. Thus, for asymptotically long times, only the n = 0 
term in Eq. (21) persists, and this is merely the Gaussian term 

( x  - Xo) ~ 
(47rclt)- 112 exp 4clt 

4. SPAT IAL  M O M E N T S  OF A V E R A G E  T E M P E R A T U R E  
PROFILE 

The average temperature profile ~T(x,  t ) )  is a nonnegative function and 
its integral over ( - o %  oo) is finite; consequently (T (x ,  t ) )  can be interpreted 
as a probability density function. The lower order spatial moments 

( (x  - Xo)') = (x - Xo)'<r(x, t ) )  dx (22) 
c o  

can be evaluated and shed light on the global behavior of (T (x ,  t)) .  When l 
is an odd integer, we have ((x - Xo) z) = 0 since (T ( x ,  t ) )  is symmetric 
about Xo. 

Perhaps the easiest way to obtain these moments is to multiply Eq. (18) 
by (x - x0) ~ and integrate over x; the final result is 

d/dt ( ( x  - Xo)') = l ( I -  1)cl((x - Xo) ' -2)  

+ l ( l -  1 ) ( / -  2 ) ( / -  3)c2<(x - x0 ) ' - ' )  (23) 

For l = 2, this becomes 

which has the solution 

d/dt ( ( x  - Xo)2) = 2 c 1  (24) 

( ( x  - Xo) 2) = 2clt  (25) 

since the initial condition is T(x,  0) = 3(x - x0). This is the moment we 
would obtain if (T (x ,  t ) )  were in the form of  a Gaussian. 



176 Ronald Forrest Fox and Richard Barakat 

For the fourth moment (1 = 4), Eq. (23) becomes 

d/dt ((x - Xo) ~) = 12c~((x - xo) 2) + 24c2 (26) 

which has the solution 

( ( x  - xo) ~) = 12c~2t 2 + 24c2t (27) 

The first term on the right-hand side is the fourth moment if ( T ( x ,  T ) )  were 
Gaussian, and is the dominant term when t is large. 

In fact, all the moments tend to the Gaussian limiting values as t is made 
large. However, the Gaussian is precisely the form of the temperature pulse 
for the corresponding deterministic situation. ~4~ Thus the stochastic pulse 
shape tends to the corresponding deterministic pulse shape as time increases. 

It is also possible to obtain the results listed in Eqs. (25) and (27) by 
direct integration of  Eq. (21), although the analysis is tedious. 

5. E Q U A T I O N  FOR (S(x. t)S(y, t )>  

An equation for the covariance (S(x, t ) S ( y ,  t ) )  can be obtained by 
using the following procedure. First discretize the x axis by using n points 
x~, .... x . .  The following abbreviations are employed: 

s ,  =- s(x~,  t), ;,~(t) - ~(x, ,  t) 

(#~(t)#j( t))  - 2R~j 8(t - s)  (28) 

Also, 

where 

02/~x 2 ..~ S~j = A,~A~j = 3ij - 28~_1.j + 3i-2,j (29) 

A~ = 3~ - 3~_1.~ (30) 

Furthermore, we consider f(S1 ..... S. ;  t) as the probability density function 
for the values taken on by $1 ..... S. .  

The "continui ty" equation for f is 

0 s s . ;  t)  = a ~ f (  i ..... -~-ff~ [~,/($1 ..... S.;  t)] (31) 

and from Eqs. (1) and (4), it follows that 

~, = ~o[1 + ~( t ) l S ,  j s j  (32) 

Consequently 

-~ f (S1  S.;  t) = {vo[1 + #,( t )]S~jSj f(S,  S~; t)} (33) 
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which is a multiplicative stochastic process in the terminology of Fox. (~) 
Because the covariance function in Eq. (6) involves a delta function in time, 
only the first two cumulants are needed to obtain the average of Eq. (33), 
which works out to be 

It follows that 

~ ~ ( ~ ) 8~ ( f>  = - v  o ~ (S , :S , ( f ) )  + Vo 2 - ~  S,~Sr ~ Svr162 

_ ~ (S*jR'sSjj'SJ'<f>) = - v  o ~ (S, jSj<f>) Vo 2 

~2 
+ Vo 2 ~--6--~-6--(S~jSjRu.S~.j,Sy,(f)) (34) 

( ~ )  = ~oS,~(sj) + ~o2S~jR~Sjr(Sr) (35) 

This is a discretized version of  

02 ~2 ~2 
(S(x ,  t ))  = Vo (S(x ,  t ) )  + R(lx - yl)u=x (S(x ,  t ))  (36) ~-~ ~ ~ o 2 ~y ~ ~-~ 

which agrees with Eq. (18) for the mean of S(x, t). 
In a similar fashion, it can be shown that 

(d/dt)( Sl(t)Sk(t)) 

= voS~j(Sj(t)Sk(t)) + voSk~(Sj(t)S~(t)) 

+ vo2S~sRljSj~,(Sj,(t)Sk(t)) + vo2S~jR~jSjj.(Sj,(t)Sz(t)) 

+ 2vo2SljR~kSkj,(Sj(t)Sy(t)) (37) 

This is a discretized version of the equation for the covariance 

~ ( S ( x t ) S ( y t ) )  

~2 ~2 
= Vo Ox----- ~ (S(x ,  t )S(y ,  t ) )  + Vo ~y2 (S(x ,  t )S(y,  t ))  

a2 ~= ~ O~x2 + ~o 2 Fz~ R(Ix - zl) (S(x ,  t )S(y,  t ) )  

+ Uo 2 ~ R([y - z[) y=. 8-~ (S(x ,  t )S(y ,  t ) )  

+ 2vo2R([x - y 1) b-~x 2 ~ (S(x,  t )S(y,  t ))  (38) 
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A somewhat  simpler version can be obtained; define 

~(x, y, t) =- ( S ( x ,  t )S (y ,  t ) )  - (S (x ,  t ) ) ( S ( y ,  t)~ (39) 

Upon  using Eqs. (36), (38), and (15), we have 

O_~ ~(x, y, t) 
at 

= v o ~ + e ( x , y , t )  

+ vo2R"(O) ~ + vo2R,(O) or(x, y, t) 

+ 2vo2R(l x - Y I) ~ [or(x, y, t) + (S ( x ,  t ) ) ( S ( y ,  t ))]  (40) 

We have not  made any at tempt  to solve this equation. 
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